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Note: this is merely a description of the state of things, not to be taken as the ideal approach, and open to modification.

Gkeyll solves Vlasov and gyrokinetic equations, whose collisionless terms can be written as

∂fs
∂t

+∇z ·αfs = 0 (1)

at least for collisionless electrostatic gyrokinetics. Here fs is the distribution function of species s, z is the phase-space
coordinate, and α is the phase-space advection velocity. Specifically, these z and α in Gkeyll are:

Vlasov-Poisson: z = (x,v) , α =

(
v,

qs
ms

(E + v ×B)

)
Gyrokinetics (electrostatics): z =

(
R, v‖, µ

)
, α =

(
Ṙ, v̇‖

) (2)

where qs and ms are the species charge and mass, E and B are the electric and magnetic field (may have contributions
from those produced by the plasma and external fields), R is the guiding center position, v‖ the velocity parallel to the
magnetic field, µ = msv

2
⊥/(2B) the adiabatic moment, and the gyrokinetic guiding center velocities are

Ṙ =
B∗

B∗‖
v‖ +

b̂

qsB∗‖
× (µ∇B + qs∇φ) ,

v̇‖ = − B∗

msB∗‖
· (µ∇B + qs∇φ) .

(3)

1 Collisionless CFL constraint on ∆t

We integrate equation 1 with explicit methods that have a maximum time step ∆t in order for the time integration to
remain stable. This maximum ∆t is set by a Courant-Friedrichs-Lewy (CFL) condition, which for a 1D avection equation
∂tf + ∂x(vf) = 0, is

∆tmax ≤ C min

(
∆x

v

)
=

C

max (ωCFL)
, (4)

where C is an O(1) factor that depends on the spatial discretization and the time integration method, and v is some
advection velocity in a grid with cell length ∆x. There is lots of ambiguity in equation 4, however, especially for a
multidimensional discontinuous Galerkin (DG) code. Despite such ambiguities, solvers in Gkeyll essentally compute the
∆t from the relation

∆t = ∆tmax ≤ cflFrac · C

maxN
i=1 (ωCFL,i)

(5)

with, for example, C = 1 for integration with SSP-RK3 and the maximum of the CFL frequency (ωCFL,i) computed
amongst all our N cells in phase space. The user has the option to make the time step smaller by providing an additional
cflFrac factor in the input file.

The ∆t calculation thus mostly comes down to how we compute the CFL frequencies, ωCFL,i in every cell. In Gkeyll we
have settled for a couple of options, which differ between the Vlasov and gyrokinetic solvers.

1.1 Vlasov’s ωCFL,i

In a Vlasov simulation with cdim configuration space dimensions and vdim velocity space dimensions (pdim = cdim+vdim)
using a polynomial basis of order p, the CFL frequency is computed as

ωCFL,i = (2p+ 1)

[
cdim∑
d=1

max(|vd,i|)
∆zd

+

pdim∑
d=cdim+1

αd,i|z=zi

∆zd

]
. (6)

In this relation ∆zd is the cell length in the dth direction. The term proportional to the d-component of the velocity in the
ith cell, vd,i, arises from advection in configuration space. The term proportional to the d-component of the acceleration
in the ith cell evaluated at the cell center, αd,i|z=zi , arises from advection in velocity space.

1.2 The gyrokinetic ωCFL

The CFL frequency in every cell is evaluated differently in the gyrokinetic solver. We instead use a function that depends
on the advection speeds at quadrature points on the surfaces of a cell. For this reason we introduce a set of Nq,d Gauss-
Legendre quadrature points on the surface orthogonal to the d-direction whose coordinates are zq,d. The CFL frequency
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in the gyrokinetic solver is then computed using

ωCFL,i =
2p+ 1

2pdim

cdim+1∑
d=1

2

∆zd

Nq,d∑
q=1

[
1

2
(|αd,i| − αd,i) |zleft

q,d
+

1

2
(|αd,i|+ αd,i) |zright

q,d

]
. (7)

The notation zleft
q,d and zright

q,d is used to indicate that the coordinate in the d-direction is evaluated at the left or right
boundary of the cell. For example, for the d = cdim + 1 terms in the first sum of equation 7, the advection speeds are
evaluated at

zleft
q,d = (Rq, v‖i−1/2, µq),

zright
q,d = (Rq, v‖i+1/2, µq),

(8)

i.e. the gyrocenter position R and the adiabatic moment µ are evaluated at the quadrature points on the v‖ surface of

the ith cell.

2 Collisional CFL

The CFL constraint from collisions follows the ideas in previous sections, but depend on the form of the collision operator.
At the moment we only have BGK and Dougherty (LBO) collisions, so we deal with this below.

2.1 BGK collisions

The BGK operator, regardless of whether it is used for Vlasov or gyrokinetic simulations, has the form

dfs
dt

=
∑
r

νsr (fM,sr − fs) , (9)

with the sum running over the species other than s, νsr being the collision frequency of species s colliding with species
r, and fM,sr the Maxwellian this operator relaxes fs to. In this case the CFL frequency is simply

ωCFL,i =
∑
r

νsr,i, (10)

i.e. the sum of the collision frequencies evaluated at the center of the cell.

2.2 Dougherty (LBO) collisions

The LBO, whether for Vlasov or gyrokinetics, uses cell centered values to compute the CFL. This means that for the
Vlasov LBO

df

dt
=
∑
r

νsr∇v ·
[
(v − usr) fs + v2

tsr∇vfs
]

(11)

the CFL frequency is

ωCFL,i =

vdim∑
d=1

2

∆vd

[
Cadv,p (2p+ 1)

∣∣∣∣∣∑
r

νsr,ivd,i −
∑
r

νsr,iusr,d,i

∣∣∣∣∣+ Cdiff,p
2

∆vd
(p+ 1)

2
∑
r

νsr,iv
2
tsr,i

]
, (12)

and we take Cadv,p = Cdiff,p = 1, although Cadv,p should really be 1.2 for p = 2 (see M. Francisquez, et al. Nucl. Fusion
60 (2020) 096021, section 4.1).

The gyrokinetic LBO on the other hand

df

dt
=
∑
r

νsr

{
∂

∂v‖

[(
v‖ − u‖sr

)
fs + v2

tsr

∂fs
∂v‖

]
+

∂

∂µ

(
2µfs +

2ms

B
v2
tsrµ

∂fs
∂µ

)}
(13)

uses the CFL frequency

ωCFL,i =
2

∆v‖

[
Cadv,p (2p+ 1)

∣∣∣∣∣∑
r

νsr,iv‖ −
∑
r

νsr,iu‖sr,i

∣∣∣∣∣+ Cdiff,p
2

∆v‖
(p+ 1)

2
∑
r

νsr,iv
2
tsr,i

]

+
2

∆µ

[
2Cadv,p (2p+ 1)

∑
r

νsr,iµi + Cdiff,p
2

∆µ
(p+ 1)

2 2ms

Bi

∑
r

νsr,iv
2
tsr,i2µi

]
.

(14)
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3 Other ∆t considerations

• In simulations with multiple species the max function in equation 5 is over the species as well. That is, we search
for the maximum over the phase-space grids of very species.

• The CFL frequencies from various terms are (assumed to be) additive. For example, in simulations with collisionless
and collisional terms, we simply add their respective CFL frequencies: ωCFL,i = ωcollisionless

CFL,i + ωcollisional
CFL,i .

• There are likely improvements that can be made and other limits that can be incorporated, e.g. making sure we
resolve the (electrostatic) shear Alfvén wave frequency (ωH in electrostatics, ωA in electromagnetics).

• Boundary conditions can have an impact on stability of time integration. We have not accounted for this.
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