Publications and theses

A good source of various benchmarks and other tests is A. Hakim’s Simulation Journal and its github webpage.

We have also started compiling input files for the simulations reported in publications in this repository.

Doctoral Dissertations

  • Juno, J. (2020, March 27) “A Deep Dive into the Distribution Function: Understanding Phase Space Dynamics Using Continuum Vlasov-Maxwell Simulations”. Ph. D. dissertation, University of Maryland, College Park, 2020. arXiv:2005.13539
  • Bernard, T. N. “Discontinuous Galerkin Modeling of Plasma Turbulence in a Simple Magnetized Torus”. Ph. D. dissertation, The University of Texas at Austin, 2019. PDF
  • Ng, J. “Fluid closures for the modeling of reconnection and instabilities in magnetotail current sheets”. Ph.D. dissertation, Princeton University, 2018. PDF
  • Cagas, P. (2018, July 30). “Continuum kinetic simulations of plasma sheaths and instabilities”. Ph.D. dissertation, Virginia Polytechnic Institute and State University, 2018. https://vtechworks.lib.vt.edu/handle/10919/84979
  • Shi, E. L. (2017, August 24). “Gyrokinetic Continuum Simulation of Turbulence in Open-Field-Line Plasmas”, Ph.D. dissertation, Princeton University, 2017 arXiv:1708.07283

Algorithms papers

  • Hakim, A and Juno, J. “Alias-free, matrix-free, and quadrature-free discontinuous Galerkin algorithms for (plasma) kinetic equations”. Accepted to Supercomputing arXiv:2004.09019
  • Francisquez, M., Bernard, T. N., Mandell, N. R., Hammett, G. W., Hakim, A. (2020). “Conservative discontinuous Galerkin scheme of a gyro-averaged Dougherty collision operator”, Nuclear Fusion, 60, (9). https://doi.org/10.1088%2F1741-4326%2Faba0c9
  • Hakim, A., Francisquez, M., Juno, J., & Hammett, G. W. (2020). “Conservative discontinuous Galerkin schemes for nonlinear Dougherty–Fokker–Planck collision operators”, Journal of Plasma Physics, 86, (4). https://doi.org/10.1017/S0022377820000586
  • Wang, L., Hakim, A., Ng, J., Dong, C., & Germaschewski, K. (2020). “Exact and locally implicit source term solvers for multifluid-Maxwell systems”, Journal of Computational Physics, 415, 109510. https://doi.org/10.1016/j.jcp.2020.109510
  • Cagas, P., Hakim, A., & Srinivasan, B. (2020). “Plasma-material boundary conditions for discontinuous Galerkin continuum-kinetic simulations, with a focus on secondary electron emission”, Journal of Computational Physics, 406, 109215. https://doi.org/10.1016/j.jcp.2019.109215
  • Mandell, N. R., Hakim, A., Hammett, G. W., & Francisquez, M. (2020). “Electromagnetic full-f gyrokinetics in the tokamak edge with discontinuous Galerkin methods”, Journal of Plasma Physics, 86. https://doi.org/10.1017/S0022377820000070
  • Juno, J., Hakim, A., TenBarge, J., Shi, E., & Dorland, W. (2018). “Discontinuous Galerkin algorithms for fully kinetic plasmas”, Journal of Computational Physics, 353, 110–147. https://doi.org/10.1016/j.jcp.2017.10.009
  • Hakim, A., Hammett, G. W., Shi, E. L. (2014). “On discontinuous Galerkin discretizations of second-order derivatives”, arXiv:1405.5907

Physics papers

  • Ng, J., Hakim, A., Wang, L., & Bhattacharjee, A. (2020). “An improved ten-moment closure for reconnection and instabilities”, Physics of Plasmas, 27, 082106. https://doi.org/10.1063/5.0012067
  • Juno, J., Swisdak, M. M., TenBarge. J. M., Skoutnev, V., & Hakim, A. (2020). “Noise-induced magnetic field saturation in kinetic simulations”, Journal of Plasma Physics, 86, (4). https://doi.org/10.1017/S0022377820000707
  • Ng, J., Chen, L.‐J., Hakim, A., & Bhattacharjee, A. (2020). “Reconstruction of electron and ion distribution functions in a magnetotail reconnection diffusion region”, Journal of Geophysical Research: Space Physics, 125, e2020JA027879. https://doi.org/10.1029/2020JA027879
  • Francisquez, M., Bernard, T. N., Zhu, B., Hakim, A., Rogers, B. N., & Hammett, G. W. (2020). “Fluid and gyrokinetic turbulence in open field-line, helical plasmas”, Physics of Plasmas, 27, 082301. https://doi.org/10.1063/5.0005333
  • Bernard, T. N., Stoltzfus-Dueck, T., Gentle, K. W., Hakim, A., Hammett, G. W., & Shi, E. L. (2020). “Investigating shear flow through continuum gyrokinetic simulations of limiter biasing in the Texas Helimak”, Physics of Plasmas, 27, 062304. https://doi.org/10.1063/5.0003904
  • Hakim, A. H., Mandell, N. R., Bernard, T. N., Francisquez, M., Hammett, G. W., & Shi, E. L. “Continuum electromagnetic gyrokinetic simulations of turbulence in the tokamak scrape-off layer and laboratory devices”, Physics of Plasmas, 27, 042304. https://doi.org/10.1063/1.5141157
  • Pusztai, I., Juno, J., Brandenburg, A., Tenbarge, J. M., Hakim, A., Francisquez, M., & Sundström, A. (2020). “Dynamo in Weakly Collisional Nonmagnetized Plasmas Impeded by Landau Damping of Magnetic Fields”, Physical Review Letters, 124, 255102. https://link.aps.org/doi/10.1103/PhysRevLett.124.255102
  • TenBarge, J. M., Ng, J., Juno, J., Wang, L., Hakim, A. & Bhattacharjee, A. (2019). “An extended MHD study of the 16 October 2015 MMS diffusion region crossing”, Journal of Geophysical Research: Space Physics, 124, 8474-8487. https://doi.org/10.1029/2019JA026731
  • Ng, J., Hakim, A., Juno, J., & Bhattacharjee, A. (2019). Drift instabilities in thin current sheets using a two‐fluid model with pressure tensor effects. Journal of Geophysical Research: Space Physics, 124, 3331-3346. https://doi.org/10.1029/2018JA026313
  • Dong, C., Wang, L., Hakim, A., Bhattacharjee, A., Slavin, J. A., DiBraccio, G. A., & Germaschewski, K. (2019). “A Novel Ten-Moment Multifluid Model for Mercury: From the Planetary Conducting Core to the Dynamic Magnetosphere”, Geophysical Review Letters, 46, 11584-11596. https://doi.org/10.1029/2019GL083180
  • Shi, E. L., Hammett, G. W., Stoltzfus-Dueck, T., & Hakim, A. (2019). “Full-f gyrokinetic simulation of turbulence in a helical open-field-line plasma”, Physics of Plasmas, 26, 012307. https://doi.org/10.1063/1.5074179
  • Bernard, T. N., Shi, E. L., Gentle, K. W., Hakim, A., Hammett, G. W., Stoltzfus-Dueck, T., & Taylor, E. I. (2019). “Gyrokinetic continuum simulations of plasma turbulence in the Texas Helimak”, Physics of Plasmas, 26, 042301. https://doi.org/10.1063/1.5085457
  • Skoutnev, V., Hakim, A., Juno, J., & TenBarge, J. M. (2019). “Temperature-Dependent Saturation of Weibel-Type Instabilities in Counter-streaming Plasmas”, Astrophysical Journal Letters, 872, (2). https://doi.org/10.3847%2F2041-8213%2Fab0556
  • Sundström, A., Juno, J., TenBarge, J. M., & Pusztai, I. (2019). “Effect of a weak ion collisionality on the dynamics of kinetic electrostatic shocks”, Journal of Plasma Physics, 85. https://doi.org/10.1017/S0022377819000023
  • Srinivasan, B. and Hakim, A. (2018). “Role of electron inertia and electron/ion finite Larmor radius effects in low-beta, magneto-Rayleigh-Taylor instability”, Physics of Plasmas, 25, 092108. https://doi.org/10.1063/1.5046098
  • Ng, J., Hakim, A., & Bhattacharjee, A. (2018). “Using the maximum entropy distribution to describe electrons in reconnecting current sheets”, Physics of Plasmas, 25, 082113. https://doi.org/10.1063/1.5041758
  • Wang, L., Germaschewski, K., Hakim, A., Dong, C., Raeder, J., & Bhattacharjee, A. (2018). “Electron Physics in 3-D Two-Fluid 10-Moment Modeling of Ganymede’s Magnetosphere”, Journal of Geophysical Research: Space Physics, 41 (A3), 8688–16. https://doi.org/10.1002/2017JA024761
  • Pusztai, I., TenBarge, J. M., Csapó, A. N., Juno, J., Hakim, A., Yi, K & Fülöp, T. (2018). “Low Mach-number collisionless electrostatic shocks and associated ion acceleration”, Plasma Physics and Controlled Fusion, 60 (3), 035004–11. https://doi.org/10.1088/1361-6587/aaa2cc
  • Shi, E. L., Hammett, G. W., Stolzfus-Dueck, T., Hakim, A. (2017). “Gyrokinetic continuum simulation of turbulence in a straight open-field-line plasma”, Journal of Plasma Physics, 83, 1–27. https://doi.org/10.1017/S002237781700037X
  • Cagas, P., Hakim, A., Scales, W., Srinivasan, B. (2017). “Nonlinear saturation of the Weibel instability”, Physics of Plasmas, 24 (11), 112116. https://doi.org/10.1063/1.4994682
  • Ng, J., Hakim, A., Bhattacharjee, A., Stanier, A., & Daughton, W. (2017). “Simulations of anti-parallel reconnection using a nonlocal heat flux closure”, Physics of Plasmas, 24 (8), 082112. https://doi.org/10.1063/1.4993195
  • Stanier, A., Daughton, W., Simakov, A. N., Chacón, L., Le, A., Karimabadi, H., Ng, J., & Bhattacharjee, A. (2017). “The role of guide field in magnetic reconnection driven by island coalescence”, Physics of Plasmas, 24, 022124. https://doi.org/10.1063/1.4976712
  • Cagas, P., Hakim, A., Juno, J., Srinivasan, B. (2017). “Continuum kinetic and multi-fluid simulations of classical sheaths”, Physics of Plasmas, 24 (2), 022118. https://doi.org/10.1063/1.4976544
  • Ng, J., Huang, Y.-M., Hakim, A., Bhattacharjee, A., Stanier, A., Daughton, W., Wang, L., & Germaschewski, K. (2015). “The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments”, Physics of Plasma, 22, 112104. https://doi.org/10.1063/1.4935302
  • Stanier, A., Daughton, W., Chacón, L., Karimabadi, H., Ng, J., Huang, Y.-M., Hakim, A., & Bhattacharjee, A. (2015). “Role of Ion Kinetic Physics in the Interaction of Magnetic Flux Ropes”, Physical Review Letters, 115, 175004. https://doi.org/10.1103/PhysRevLett.115.175004
  • Wang, L., Hakim, A. H., Bhattacharjee, A., & Germaschewski, K. (2015). “Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection”, Physics of Plasmas, 22 (1), 012108. https://doi.org/10.1063/1.4906063